THE STRUCTURE OF 1,2,4,4,6-PENTAMETHYL-1,4-DIHYDROPYRIDINE--3,5-DICARBONITRILE

Jiří Novotnýa ${ }^{a}$, Antonín Kurfürst ${ }^{b}$ and Bohumil Kratochvíl ${ }^{a}$
${ }^{a}$ Department of Solid State Chemistry, Prague Institute of Chemical Technology, 16628 Prague 6 and
${ }^{b}$ Department of Organic Chemistry,
Prague Institute of Chemical Technology, 16628 Prague 6

Received December 1, 1989
Accepted January 16, 1990

The crystal and molecular structure of 1,2,4,4,6-pentamethyl-1,4-dihydropyridine-3,5-dicarbonitrile was solved by direct methods and anisotropically refined by the full-matrix least-squares method to a final R value of 0.045 for 1280 observed reffections $(I>3 \sigma(I)$). The compound crystallizes in the Pbca space group with lattice parameters of $a=12 \cdot 021$ (1), $b=14.271$ (2), $c=13.465(1) \AA, Z=8$. The six-membered 1,4 -dihydropyridine ring of the title compound assumes the boat conformation, while the 1,4 -dihydropyridine ring in the related compound, 1 -ethyl-2,4,4,6-tetramethyl-1,4-dihydropyridine-3,5-dicarbonitrile, has the envelope conformation. The difference in the fluorescence intensities of these substances can be explained on the basis of this conformational difference. No intermolecular hydrogen bonds were found in the structure, indicating that the crystal is held together by van der Waals interactions.

In the last twenty years, 1,4-dihydropyridines have become increasingly important, primarily because of their importance in medicine ${ }^{1}$. These substances, with general formula I, act as Ca^{2+} antagonists during interaction with the cell membrane

$$
\begin{aligned}
& \| a, \mathrm{R}=\mathrm{CH}_{3} \\
& \| b, \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}
\end{aligned}
$$

proteins, i.e. they block passage of Ca^{2+} ions through the membrane. Consequently detailed knowledge of the structures of 1,4-dihydropyridines is very important in elucidation of the relationship between the structure and the biological action. At present, a number of structures of 1,4-dihydropyridines have been found by dif-
fraction methods ${ }^{2-15}$, where the dihydropyridine ring mostly has the boat conformation. 1,4-Dihydropyridines have been employed in other fields ${ }^{\mathbf{1 , 1 6}}$ in addition to their biological applications. For example, some 1,4-dihydropyridine derivatives have been found to have interesting luminescence properties ${ }^{17-22}$. Of the type-II compounds, $I I b$ is employed in the scintillation technique ${ }^{23}$. Study of the fluorescence of a number of analogous type-II derivatives with long alkyl chains (ref. ${ }^{22}$) revealed that substance $I I b$ exhibits the most intense fluorescence in the crystal state. The intensity of the fluorescence of type-II compounds decreases with increasing alkyl length (from methyl to pentyl) and only substance IIb constitutes an important exception to this trend. It is thus probable that the conformation of the fluorophore in the crystal state will be different for substance IIb than for the other type-II compounds. The X-ray structural analysis of substance $I I b$ has already been carried out ${ }^{24}$ and consequently this work deals with solution of the structure of substance IIa. As the fluorescence intensity increases with increasing planarity of the molecule in $S_{1}\left(\right.$ ref. $\left.^{25}\right)$ and the Stokes shift is approximately the same ${ }^{22,26}$ for both substances $I I a$ and $I I b$, then it can be assumed that the dihydropyridine ring in the ground state of $I I a$ will be less planar than in IIb.

EXPERIMENTAL

The title compound, 1,2,4,4,6-pentamethyl-1,4-dihydropyridine-3,5-dicarbonitrile, IIa, $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3}$ $(201 \cdot 3)$ was prepared by the published procedure ${ }^{22}$. M.p. $172-174^{\circ} \mathrm{C}$, ref. ${ }^{22}$: m.p. $169-170^{\circ} \mathrm{C}$. Crystals for X-ray structural analysis were obtained by slow crystallization from an ethanolic solution.

Crystal Structure Determination

Orthorhombic, space group Pbca, $a=12.021(1), \quad b=14.271(2), \quad c=13.465(1) \AA, \quad V=$ $=2309.8(2) \AA^{3}, \quad Z=8, \varrho_{0}=1 \cdot 16(3), \varrho_{\mathrm{c}}=1.157 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu=0.67 \mathrm{~cm}^{-1}, \quad F(000)=864$, $\mathrm{MoK}_{\alpha}, \lambda=0.71073 \AA$. The density was measured by the flotation method in a diiodomethane--toluene mixture at $23^{\circ} \mathrm{C}$. The parameters for the intensity data set, structural solution and refinement are listed in Table I.

DISCUSSION

The final coordinates and the equivalent isotropic thermal parameters for the non- H atoms are listed in Table II and the bond distances, bond angles and endocyclic torsion angles are given in Table III.* The optimal least-squares planes fitted through the atoms of the molecule are given in Table IV. A perspective view of the molecule with the atomic numbering scheme is depicted in Fig. 1 and the molecular packing is shown in Fig. 2.

* Tables of the $\left|F_{\mathrm{o}}\right|, F_{\mathrm{c}}$, values, anisotropic temperature factors and H -atom positions are available on request from the authors.

The bond distances and angles in the molecule correspond to the expected values. The six-membered dihydropyridine ring assumes the boat conformation, with the $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4$ and C5 atoms located close to one plane and the N1 and C3 atoms at

Table I

Data collection and structure refinement parameters

Crystal dimensions	$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$
Diffractometer used	Enraf-Nonius CAD4 equipped with a graphite monochromator
Scan technique	$\omega / 2 \Theta$
No. and Θ range of reflections for lattice parameter refinement	19; $10 \cdot 2-15 \cdot 8^{\circ}$
Maximum value of $(\sin \Theta) / \lambda$	$0 \cdot 703 \AA^{-1}$
Range of h, k and l	$0 \rightarrow 16,0 \rightarrow 19,0 \rightarrow 18$
Standard reflections	-1, 3, -2; 1, 2, -2
Standard reffections monitored in interval, intensity fluctuation	$120 \mathrm{~min} ; 1 \%$
Total number of reflections measured; 2Θ range	$3779 ; 2 \Theta \leqq 60^{\circ}$
No. of observed reflections	1280
Criterion for observed reflections	$I>3 \sigma(I)$
Method used to solve structure	Direct methods, subsequent difference Fourier
Method used to find H -atoms	Located from difference Fourier map and refined isotropically
Function minimized	$\sum w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2}$
Weighting scheme	$w=4 F_{0}^{2} /\left[\sigma\left(F_{0}^{2}\right)\right]^{2}$
Parameters refined	197
Value of R	0.045
Value of $w R$	0.054
Value of S	1.362
Ratio of max. LS shift to e.s.d. (Δ / σ)	0.03
Max. and min. heights in final $\Delta \varrho$ map	$0 \cdot 15 ;-0.14 \mathrm{e}^{\AA^{-3}}$
Source of atomic scattering factors	SDP system (ref. ${ }^{\text {7 }}$)
Program used	SDP system
Computer used	DEC PDP 11/73

Table II
Positional ($.10^{4}$) and equivalent isotropic thermal parameters. $B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} B_{i j} a_{i} a_{j}$

Atom	x	y	z	B_{eq}, \AA^{2}
N1	$2577(2)$	$5239(1)$	$5363(1)$	$3 \cdot 41(4)$
N 2	$5121(2)$	$3981(2)$	$7742(2)$	$5 \cdot 71(6)$
N 3	$5040(2)$	$7800(2)$	$4733(2)$	$5 \cdot 22(5)$
C 1	$3144(2)$	$4668(2)$	$6035(2)$	$2 \cdot 97(4)$
C2	$4034(2)$	$5013(1)$	$6516(2)$	$2 \cdot 96(4)$
C3	$4379(2)$	$6038(2)$	$6474(2)$	$3 \cdot 18(4)$
C4	$3990(2)$	$6384(2)$	$5466(2)$	$2 \cdot 98(4)$
C5	$3096(2)$	$6033(2)$	$4998(2)$	$3 \cdot 08(4)$
C6	$2744(2)$	$3677(2)$	$6155(2)$	$4 \cdot 23(6)$
C7	$4629(2)$	$4423(2)$	$7184(2)$	$3 \cdot 69(5)$
C8	$5639(2)$	$6143(2)$	$6587(2)$	$5 \cdot 54(6)$
C9	$3775(3)$	$6586(2)$	$7294(2)$	$4 \cdot 93(6)$
C10	$4559(2)$	$7171(2)$	$5046(2)$	$3 \cdot 66(5)$
C11	$2630(2)$	$6447(2)$	$4055(2)$	$4 \cdot 54(6)$
C12	$1481(2)$	$4952(2)$	$4982(2)$	$5 \cdot 22(6)$

Fig. 1
Perspective view of the title compound with the atomic numbering scheme
positions well outside this plane. In contrast, this ring in the related compound, 1 -ethyl-2,4,4,6-tetramethyl-1,4-dihydropyridine-3,5-dicarbonitrile (see ref. ${ }^{24}$) has the envelope conformation. The difference in the observed fluorescence intensities between these compounds can probably be explained on the basis of this different conformation. A plane can be ideally fitted through the C12, N1, C3, C8 and C9 atoms. This plane is almost perpendicular to the plane of the dihydropyridine ring (with a dihedral angle of $89 \cdot 78(8)^{\circ}$).

No intermolecular hydrogen bonds were found in the structure. Examination of the intermolecular distances between the non-H atoms indicates that the crystal is

Table III
Interatomic distances (\AA), angles $\left({ }^{\circ}\right)$ and selected torsion angles $\left({ }^{\circ}\right)$

Bond	Bond length	Bond	Bond length
N 1-C1	1-395(3)	C2-C7	1.426(3)
N 1-C5	1-385(3)	C3-C4	1-519(3)
N1-C12	1.473(3)	C3-C8	$1 \cdot 530(4)$
N2-C7	1-146(3)	C3-C9	1-536(4)
N3-C10	1-149(3)	C4-C5	1.342(4)
$\mathrm{C} 1-\mathrm{C} 2$	1.343(3)	C4-C10	1-432(3)
C1-C6	1-503(3)	C5-C11	$1 \cdot 509(3)$
C2-C3	1.522(4)		
Atoms	Angle	Atoms	Angle
C1-N1-C5	119.2(2)	C4-C3-C8	111.3(2)
C1-N1-C12	120.1(2)	C4-C3-C9	109.4(2)
C5-N1-C12	120.5(2)	C8-C3-C9	110.3(3)
N1-C1-C2	119.2(2)	C3-C4-C5	123.0(2)
N1-C1-C6	117.6(2)	C3-C4-C10	117.4(2)
C2-C1-C6	123.2(3)	C5-C4-C10	119.4(3)
C1-C2-C3	123.4(2)	N1-C5-C4	119.9(2)
C1-C2-C7	119.2(2)	N1-C5-C11	$117 \cdot 0(2)$
C3-C2-C7	117.0(2)	C4-C5-C11	123.1(3)
C2-C3-C4	105•2(2)	N2-C7-C2	177.2(3)
C2-C3-C8	111.1(2)	N3-C10-C4	177.9(3)
C2-C3-C9	109.5(2)		
C5-N1-C1-C2	17.8(3)	C1-C2-C3-C4	-29.4(3)
C1-N1-C5-C4	$-17 \cdot 4(3)$	C2-C3-C4-C5	29.8(3)
N1-C1-C2-C3	8.3(3)	C3-C4-C5-N1	$-9 \cdot 1(3)$

Table IV
Least squares planes fitted through the atoms in the molecule. Each plane is defined as $\mathrm{A} X+$ $\mathrm{B} Y+\mathrm{C} Z-\mathrm{D}=0$

Atoms	Deviation from the plane, \AA	Atoms	Deviation from the plane, \AA
Plane $\mathrm{I}^{\text {a }}$		Plane II ${ }^{\text {b }}$	
C1*	0.003(2)	C12*	-0.001(3)
C2*	-0.002(2)	N1*	$0.001(2)$
C4*	0.002(2)	C3* le	than 0.000
C5*	-0.003(2)	C8* le	than 0.000
N1	$-0.185(2)$	C9* le	than 0.000
C3	$-0.382(2)$		
Plane III ${ }^{\text {c }}$			
(the plane fitted through the atoms of the dihydropyridine ring in 1-ethyl-2,4,4,6-tetramethyl-1,4-dihydro-3,5--pyridinedicarbonitrile - see ref. ${ }^{24}$)			
C1*	0.020	C2 ${ }^{\text {i }}$ *	-0.015
C2*	-0.015	C3 ${ }^{\text {i }}$	0.001
C3*	0.001	N10*	0.007

${ }^{a} \mathrm{~A}=0.6021, \mathrm{~B}=-0.4552, \mathrm{C}=-0.6559, \mathrm{D}=-6.0914, \chi^{2}=5 ;{ }^{b} \mathrm{~A}=-0.0212, \mathrm{~B}=$ $=0.8093, \mathrm{C}=-0.5871, \mathrm{D}=1.7421, \chi^{2}=0 ;^{c} \mathrm{~A}=-0.7011, \mathrm{~B}=0, \mathrm{C}=-0.7131, \mathrm{D}=$ $=-1.7413$. The planes are fitted only through the atoms designated by an asterisk.
stabilized by van der Waals interactions alone; the shortest distances are $\mathrm{N} 2-\mathrm{C}^{\mathbf{i}}=$ $=3 \cdot 51(3) \AA$ and $\mathrm{C} 12-\mathrm{C} 12^{\mathrm{ii}}=3 \cdot 56(3) \AA$, where $\mathrm{i}: x+1 / 2, y, 1 \cdot 5-z$ and ii : $\bar{x}, 1-y, 1-z$.

REFERENCES

1. Kuthan J., Kurfürst A.: Int. Eng. Chem., Drug Res. Develop. 21, 191 (1982).
2. Krajewski J., Urbanczyk-Lipkowska Z., Gluzinski P.: Acta Crystallogr., B 33, 2967 (1977).
3. Mishnev A. F., Shvec A. E., Bleidelis Y., Duburs G., Sausins A., Lusis V. K.: Khim. Geterotsikl. Soedin. 1977, 1229.
4. Krajewski J., Urbanczyk-Lipkowska Z., Gluzinski P.: Cryst. Struct. Commun. 6, 787 (1977).
5. Hempel A., Gupta M. P.: Acta Crystallogr., B 34, 3815 (1978).
6. Triggle A. M., Shefter E.,Triggle D. J.: J. Med. Chem. 23, 1442 (1980).
7. Bundule M. F., Keeme A. A., Bleidelis Y., Bieseniece E., Uldrikis J., Duburs G.: Zh. Strukt. Khim. 22, 124 (1981).
8. Fossheim R.: Acta Chem. Scand., B 39, 785 (1985).
9. Fossheim R., Svarteng K., Mostad A., Romming Ch., Schefter E., Triggle D. J.: J. Med. Chem. 25, 126 (1982).
10. Tacke R., Bentlage A., Sheldrick W. S., Ernst L., Towart R., Stoepel K.: Z. Naturforsch., B 37, 443 (1982).
11. Schauer C. K., Anderson O. P., Natale N. R., Quincy D. A.: Acta Crystallogr., C 42, 884 (1986).
12. Fossheim R.: J. Med. Chem. 29, 305 (1986).
13. Fossheim R.: Acta Chem. Scand., B 40, 777 (1986).
14. Fossheim R.: Acta Chem. Scand., B 41, 581 (1987).
15. Fossheim R., Joslyn A., Solo A. J., Luchewski E., Rutledge A., Triggle D. J.: J. Med. Chem. 31, 300 (1988).
16. Eisner U., Kuthan J.: Chem. Rev. 72, 1 (1972).
17. Dittmer D. C., Blidner B. B.: J. Org. Chem. 38, 2873 (1973).
18. Kano K., Matsuo T.: Bull. Chem. Soc. Jpn. 49, 3269 (1976).
19. Kano K., Matsuo T.: Tetrahedron Lett. 1975, 1389.
20. Kikugawa K., Ido Y.: Lipids 19, 600 (1984).
21. Kikigawa K., Ido Y., Mikami A.: J. Am. Oil Chem. Soc. 61, 1574 (1984).
22. Kuthan J., Paleček J.: Collect. Czech. Chem. Commun. 39, 3711 (1974).
23. Gilar O., Pavlíček Z., Jursová L.: Tesla Electron. 8, 87 (1975).
24. Huml K., Ječný J., Kutschabsky L., Reck G.: Acta Crystallogr., B 35, 444 (1979).
25. Berlman I. B.: J. Phys. Chem. 74, 3985 (1970).
26. Kurfürst A., Luňák S., Jr., Nepraš M.: Unpublished results.
27. Frenz B. A. and Associated, Inc., College Station, Texas 77840 and Enraf-Nonius, Delft, Holland: SDP. Structure Determination Package, Delft 1985.

Translated by M. Štuliková.

